切割线定理的证明带图,切割线定理推论的详细证明过程
本内容由小编为大家分享关于招生简章、录取分数、报名考试、志愿填报、大学院校排名等教育信息.切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。切割线定理的推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等。切割线定理的证明设ABP是⊙O的一条割线,PT是
本内容由小编为大家分享关于招生简章、录取分数、报名考试、志愿填报、大学院校排名等教育信息.
切割线定理:
从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。切割线定理的推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等。
切割线定理的证明
设ABP是⊙O的一条割线,PT是⊙O的一条切线,切点为T,则PT²=PA·PB。
证明:连接AT, BT。
∵ ∠PTB=∠PAT(弦切角定理);∠APT=∠TPB(公共角);
∴ △PBT∽△PTA(两角对应相等,两三角形相似);
∴PB:PT=PT:AP;
即:PT²=PB·PA。
割线定理
割线定理,指的是从圆外一点引圆的两条割线,这一点到每条割线与圆交点的距离的积相等。割线定理为圆幂定理之一。
文字表达:从圆外一点引圆的两条割线,这一点到每条割线与圆交点的距离的积相等。
数学语言:从圆外一点L引两条割线与圆分别交于A.B.C.D 则有 LA·LB=LC·LD=LT²。
几何语言:∵割线LDC和LBA交于圆O于ABCD点
∴LA·LB=LC·LD=LT²
如图所示。(LT为切线)Www.ZikaoOnline.Com
ZhaoSheng.NET高考招生网提供最新高考成绩查询时间,高考成绩查询入口,高考信息,高考志愿填报指导,高考政策,高考分数线.高考录取人数,高考真题,高考作文,高校招生报名信息。
免责声明:我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理,本文部分文字与图片资源来自于网络,转载此文是出于传递更多信息之目的,若有来源标注错误或侵犯了您的合法权益,请立即通知我们,情况属实,我们会第一时间予以删除,并同时向您表示歉意,谢谢!
联系电话:135-2467-2021