您现在的位置是:首页» 备考复习» 向量的运算的所有公式,向量加减乘除运算公式

向量的运算的所有公式,向量加减乘除运算公式

2023-06-21 17:12:56
本内容由小编为大家分享关于招生简章、录取分数、报名考试、志愿填报等教育信息。向量的运算的所有公式有哪些平面向量是在二维平面内既有方向又有大小的量,物理学中也称作矢量,与之相对的是只有大小、没有方向的数量(标量)。下面是小编为大家整理的向量的

本内容由小编为大家分享关于招生简章、录取分数、报名考试、志愿填报等教育信息。

向量的运算的所有公式有哪些

平面向量是在二维平面内既有方向又有大小的量,物理学中也称作矢量,与之相对的是只有大小、没有方向的数量(标量)。下面是小编为大家整理的向量的运算的所有公式,希望能帮助到大家!

向量的加法

1、向量的加法满足平行四边形法则和三角形法则.

AB+BC=AC.

a+b=(x+x',y+y').

a+0=0+a=a.

2、向量加法的运算律:

交换律:a+b=b+a;

结合律:(a+b)+c=a+(b+c).

向量的减法

如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0

AB-AC=CB.即“共同起点,指向被减”

a=(x,y) b=(x',y') 则 a-b=(x-x',y-y').

向量的的数量积

1、定义:已知两个非零向量a,b.作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π

定义:两个向量的数量积(内积、点积)是一个数量,记作a?b.若a、b不共线,则a?b=|a|?|b|?cos〈a,b〉;若a、b共线,则a?b=+-∣a∣∣b∣.

2、向量的数量积的坐标表示:a?b=x?x'+y?y'.

3、向量的数量积的运算律

a?b=b?a(交换律);

(λa)?b=λ(a?b)(关于数乘法的结合律);

(a+b)?c=a?c+b?c(分配律);

4、向量的数量积的性质

a?a=|a|的平方.

a⊥b 〈=〉a?b=0.

|a?b|≤|a|?|b|.

5、向量的数量积与实数运算的主要不同点

(1)向量的数量积不满足结合律,即:(a?b)?c≠a?(b?c);例如:(a?b)^2≠a^2?b^2.

(2)向量的数量积不满足消去律,即:由 a?b=a?c (a≠0),推不出 b=c.

(3)|a?b|≠|a|?|b|

(4)由 |a|=|b| ,推不出 a=b或a=-b.

数乘向量

1、实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣?∣a∣.

当λ>0时,λa与a同方向;

当λ<0时,λa与a反方向;

当λ=0时,λa=0,方向任意.

当a=0时,对于任意实数λ,都有λa=0.

注:按定义知,如果λa=0,那么λ=0或a=0.

实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩.

当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;

当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍.

2、数与向量的乘法满足下面的运算律

结合律:(λa)?b=λ(a?b)=(a?λb).

向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.

数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.

数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b.② 如果a≠0且λa=μa,那么λ=μ.

向量的向量积

1、定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b.若a、b不共线,则a×b的模是:∣a×b∣=|a|?|b|?sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系.若a、b共线,则a×b=0.

2、向量的向量积性质:

∣a×b∣是以a和b为边的平行四边形面积.

a×a=0.

a‖b〈=〉a×b=0.

3、向量的向量积运算律

a×b=-b×a;

(λa)×b=λ(a×b)=a×(λb);

(a+b)×c=a×c+b×c.

注:向量没有除法,“向量AB/向量CD”是没有意义的.

高考招生网Www.ZhaoSheng.net提供最新高考成绩查询时间,高考成绩查询入口,高考信息,高考志愿填报指导,高考政策,高考分数线,高考录取人数,高考真题,高考作文,高校招生报名信息。

免责声明:我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理,本文部分文字与图片资源来自于网络,转载此文是出于传递更多信息之目的,若有来源标注错误或侵犯了您的合法权益,请立即通知我们,情况属实,我们会第一时间予以删除,并同时向您表示歉意,谢谢!

联系电话:135-2467-2021