高考数学三角函数必考及常考题型,九年级数学三角函数知识点
本内容由小编为大家分享关于招生简章、录取分数、报名考试、志愿填报等教育信息。
2017高考数学三角函数知识点总结
三角函数是高考数学的重要知识点,为了方便参加高考的同学们复习学三角函数,接下来,小编为你分享2017高考数学三角函数知识点总结,希望对你有帮助。
2017高考数学三角函数知识点总结
一、三角函数
1.周期函数:一般地,对于函数f(x),如果存在一个不为0的常数T使得当x取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数,非零常数T叫做这个函数的周期,把所有周期中存在的最小正数,叫做最小正周期三角函数属于高中数学中的重点内容,在高考理科数学中更是占据很重要的位置。
2.三角函数的图像:可以利用三角函数线用几何法作出,在精确度要求不高的情况下,常用五点法作图,要特别注意“五点”的取法。
3.三角函数的定义域:三角函数的定义域是研究其他一切性质的前提,求三角函数的定义域实际上就是解最简单的三角不等式,通常可用三角函数的图像或三角函数线来求解,注意数形结合思想的应用。
二、反三角函数主要是三个:
y=arcsin(x),定义域[-1,1] ,值域[-π/2,π/2]图象用红色线条;
y=arccos(x),定义域[-1,1] , 值域[0,π],图象用蓝色线条;
y=arctan(x),定义域(-∞,+∞),值域(-π/2,π/2),图象用绿色线条;
sin(arcsin x)=x,定义域[-1,1],值域 [-1,1] arcsin(-x)=-arcsinx
三、三角函数其他公式
arcsin(-x)=-arcsinx
arccos(-x)=π-arccosx
arctan(-x)=-arctanx
arccot(-x)=π-arccotx
arcsinx+arccosx=π/2=arctanx+arccotx
sin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx)
当x∈[—π/2,π/2]时,有arcsin(sinx)=x
当x∈[0,π],arccos(cosx)=x
x∈(—π/2,π/2),arctan(tanx)=x
x∈(0,π),arccot(cotx)=x
x〉0,arctanx=π/2-arctan1/x,arccotx类似
若(arctanx+arctany)∈(—π/2,π/2),则arctanx+arctany=arctan(x+y/1-xy)
四、三角函数与平面向量的综合问题
(1)巧妙“转化”--把以“向量的数量积、平面向量共线、平面向量垂直”“向量的线性运算”形式出现的条件还其本来面目,转化为“对应坐标乘积之间的关系”;
(2)巧挖“条件”--利用隐含条件”正弦函数、余弦函数、的有界性“,把不等式的恒成立问题转化为含参数ψ的方程,求出参数ψ的值,从而可求函数的解析式;
(3)活用”性质“--活用正弦函数与余弦函数的单调性、对称性、周期性、奇偶性,以及整体换元思想,即可求其对称轴与单调区间。
五、见三角函数“对称”问题,启用图象特征代数关系:(A≠0)
1.函数y=Asin(wx+φ)和函数y=Acos(wx+φ)的图象,关于过最值点且平行于y轴的直线分别成轴对称;
2.函数y=Asin(wx+φ)和函数y=Acos(wx+φ)的图象,关于其中间零点分别成中心对称;
3.同样,利用图象也可以得到函数y=Atan(wx+φ)和函数y=Acot(wx+φ)的对称性质。
2017高考数学三角函数题型训练技巧
三角函数,平面向量,解三角形。三角函数是每年必考的知识点,难度较小,选择,填空,解答题中都有涉及,有时候考察三角函数的公式之间的互相转化,进而求单调区间或值域;有时候考察三角函数与解三角形,向量的综合性问题,当然正弦,余弦定理是很好的工具。向量可以很好得实现数与形的转化,是一个很重要的知识衔接点,它还可以和数学的一大难点解析几何整合。
1.三角函数恒等变形的基本策略。
(1)常值代换:特别是用"1"的代换,如1=cos2θ+sin2θ=tanx·cotx=tan45°等。
(2)项的分拆与角的配凑。如分拆项:sin2x+2cos2x=(sin2x+cos2x)+cos2x=1+cos2x;配凑角:α=(α+β)-β,β=-等。
(3)降次与升次。(4)化弦(切)法。
(4)引入辅助角。asinθ+bcosθ=sin(θ+),这里辅助角所在象限由a、b的符号确定,角的值由tan=确定。
2.证明三角等式的思路和方法。
(1)思路:利用三角公式进行化名,化角,改变运算结构,使等式两边化为同一形式。
(2)证明方法:综合法、分析法、比较法、代换法、相消法、数学归纳法。
3.证明三角不等式的方法:比较法、配方法、反证法、分析法,利用函数的单调性,利用正、余弦函数的有界性,利用单位圆三角函数线及判别法等。
4.解答三角高考题的策略。
(1)发现差异:观察角、函数运算间的差异,即进行所谓的"差异分析"。
(2)寻找联系:运用相关公式,找出差异之间的内在联系。
(3)合理转化:选择恰当的公式,促使差异的转化。
高考数学三角函数题真题及答案
猜你感兴趣:
1.2017高考数学三角函数考点分析和命题趋势
2.高考数学三角函数重点考点归纳
3.高考数学三角函数知识点归纳
4.2017年高考数学三角函数公式整理
5.高三文科数学三角函数知识点归纳
6.高考数学三角函数题型解法总结
高考招生网Www.ZhaoSheng.net提供最新高考成绩查询时间,高考成绩查询入口,高考信息,高考志愿填报指导,高考政策,高考分数线,高考录取人数,高考真题,高考作文,高校招生报名信息。
免责声明:我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理,本文部分文字与图片资源来自于网络,转载此文是出于传递更多信息之目的,若有来源标注错误或侵犯了您的合法权益,请立即通知我们,情况属实,我们会第一时间予以删除,并同时向您表示歉意,谢谢!
联系电话:135-2467-2021