您现在的位置是:首页» 备考复习» 高一数学练习题三角函数诱导公式,三角函数诱导公式解题

高一数学练习题三角函数诱导公式,三角函数诱导公式解题

2023-06-21 17:21:08
本内容由小编为大家分享关于招生简章、录取分数、报名考试、志愿填报等教育信息。三角函数公式及练习题   三角函数是数学中属于初等函数中的超越函数的一类函数,掌握三角函数的内部规律及本质也是学好三角函数的关键所在。下面小编为大家带来三角函数公式

本内容由小编为大家分享关于招生简章、录取分数、报名考试、志愿填报等教育信息。

三角函数公式及练习题

  三角函数是数学中属于初等函数中的超越函数的一类函数,掌握三角函数的内部规律及本质也是学好三角函数的关键所在。下面小编为大家带来三角函数公式及练习题,希望对你有所帮助。

  三角函数公式:

  倒数关系:

  tanα ·cotα=1

  sinα ·cscα=1

  cosα ·secα=1

  商的关系:

  sinα/cosα=tanα=secα/cscα

  cosα/sinα=cotα=cscα/secα

  平方关系:

  sin^2(α)+cos^2(α)=1

  1+tan^2(α)=sec^2(α)

  1+cot^2(α)=csc^2(α)

  平常针对不同条件的常用的两个公式

  sin^2(α)+cos^2(α)=1

  tan α *cot α=1

  一个特殊公式

  (sina+sinθ)*(sina-sinθ)=sin(a+θ)*sin(a-θ)

  证明:(sina+sinθ)*(sina-sinθ)=2 sin[(θ+a)/2] cos[(a-θ)/2] *2 cos[(θ+a)/2] sin[(a-θ)/2]

  =sin(a+θ)*sin(a-θ)

  坡度公式

  我们通常半坡面的铅直高度h与水平高度l的比叫做坡度(也叫坡比), 用字母i表示,

  即 i=h / l, 坡度的一般形式写成 l : m 形式,如i=1:5.如果把坡面与水平面的夹角记作

  a(叫做坡角),那么 i=h/l=tan a.

  锐角三角函数公式

  正弦: sin α=∠α的对边/∠α 的斜边

  余弦:cos α=∠α的邻边/∠α的斜边

  正切:tan α=∠α的对边/∠α的邻边

  余切:cot α=∠α的邻边/∠α的对边

  二倍角公式

  正弦

  sin2A=2sinA·cosA

  余弦

  1.Cos2a=Cos^2(a)-Sin^2(a)

  2.Cos2a=1-2Sin^2(a)

  3.Cos2a=2Cos^2(a)-1

  即Cos2a=Cos^2(a)-Sin^2(a)=2Cos^2(a)-1=1-2Sin^2(a)

  正切

  tan2A=(2tanA)/(1-tan^2(A))

  三倍角公式

  sin3α=4sinα·sin(π/3+α)sin(π/3-α)

  cos3α=4cosα·cos(π/3+α)cos(π/3-α)

  tan3a = tan a · tan(π/3+a)· tan(π/3-a)

  三倍角公式推导

  sin(3a)

  =sin(a+2a)

  =sin2acosa+cos2asina

  =2sina(1-sin²a)+(1-2sin²a)sina

  =3sina-4sin^3a

  cos3a

  =cos(2a+a)

  =cos2acosa-sin2asina

  =(2cos²a-1)cosa-2(1-cos^a)cosa

  =4cos^3a-3cosa

  sin3a=3sina-4sin^3a

  =4sina(3/4-sin²a)

  =4sina[(√3/2)²-sin²a]

  =4sina(sin²60°-sin²a)

  =4sina(sin60°+sina)(sin60°-sina)

  =4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]

  =4sinasin(60°+a)sin(60°-a)

  cos3a=4cos^3a-3cosa

  =4cosa(cos²a-3/4)

  =4cosa[cos²a-(√3/2)^2]

  =4cosa(cos²a-cos²30°)

  =4cosa(cosa+cos30°)(cosa-cos30°)

  =4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]}

  =-4cosasin(a+30°)sin(a-30°)

  =-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]

  =-4cosacos(60°-a)[-cos(60°+a)]

  =4cosacos(60°-a)cos(60°+a)

  上述两式相比可得

  tan3a=tanatan(60°-a)tan(60°+a)

  现列出公式如下: sin2α=2sinαcosα tan2α=2tanα/(1-tan^2(α)) cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) 可别轻视这些字符,它们在数学学习中会起到重要作用.包括一些图像问题和函数问题中

  三倍角公式

  sin3α=3sinα-4sin^3(α)=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cos^3(α)-3cosα=4cosα·cos(π/3+α)cos(π/3-α) tan3α=tan(α)*(-3+tan(α)^2)/(-1+3*tan(α)^2)=tan a · tan(π/3+a)· tan(π/3-a)

  半角公式

  sin^2(α/2)=(1-cosα)/2 cos^2(α/2)=(1+cosα)/2 tan^2(α/2)=(1-cosα)/(1+cosα) tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα

  万能公式

  sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)]

  其他

  sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+......+sin[α+2π*(n-1)/n]=0 cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+......+cos[α+2π*(n-1)/n]=0 以及 sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2 tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0

  四倍角公式

  sin4A=-4*(cosA*sinA*(2*sinA^2-1)) cos4A=1+(-8*cosA^2+8*cosA^4) tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)

  五倍角公式

  sin5A=16sinA^5-20sinA^3+5sinA cos5A=16cosA^5-20cosA^3+5cosA tan5A=tanA*(5-10*tanA^2+tanA^4)/(1-10*tanA^2+5*tanA^4)

  六倍角公式

  sin6A=2*(cosA*sinA*(2*sinA+1)*(2*sinA-1)*(-3+4*sinA^2)) cos6A=((-1+2*cosA^2)*(16*cosA^4-16*cosA^2+1)) tan6A=(-6*tanA+20*tanA^3-6*tanA^5)/(-1+15*tanA^2-15*tanA^4+tanA^6)

  七倍角公式

  sin7A=-(sinA*(56*sinA^2-112*sinA^4-7+64*sinA^6)) cos7A=(cosA*(56*cosA^2-112*cosA^4+64*cosA^6-7)) tan7A=tanA*(-7+35*tanA^2-21*tanA^4+tanA^6)/(-1+21*tanA^2-35*tanA^4+7*tanA^6)

  八倍角公式

  sin8A=-8*(cosA*sinA*(2*sinA^2-1)*(-8*sinA^2+8*sinA^4+1)) cos8A=1+(160*cosA^4-256*cosA^6+128*cosA^8-32*cosA^2) tan8A=-8*tanA*(-1+7*tanA^2-7*tanA^4+tanA^6)/(1-28*tanA^2+70*tanA^4-28*tanA^6+tanA^8)

  九倍角公式

  sin9A=(sinA*(-3+4*sinA^2)*(64*sinA^6-96*sinA^4+36*sinA^2-3)) cos9A=(cosA*(-3+4*cosA^2)*(64*cosA^6-96*cosA^4+36*cosA^2-3)) tan9A=tanA*(9-84*tanA^2+126*tanA^4-36*tanA^6+tanA^8)/(1-36*tanA^2+126*tanA^4-84*tanA^6+9*tanA^8)

  十倍角公式

  sin10A=2*(cosA*sinA*(4*sinA^2+2*sinA-1)*(4*sinA^2-2*sinA-1)*(-20*sinA^2+5+16*sinA^4)) cos10A=((-1+2*cosA^2)*(256*cosA^8-512*cosA^6+304*cosA^4-48*cosA^2+1)) tan10A=-2*tanA*(5-60*tanA^2+126*tanA^4-60*tanA^6+5*tanA^8)/(-1+45*tanA^2-210*tanA^4+210*tanA^6-45*tanA^8+tanA^10)

  N倍角公式

  根据棣美弗定理,(cosθ+ i sinθ)^n = cos(nθ)+ i sin(nθ) 为方便描述,令sinθ=s,cosθ=c 考虑n为正整数的情形: cos(nθ)+ i sin(nθ) = (c+ i s)^n = C(n,0)*c^n + C(n,2)*c^(n-2)*(i s)^2 + C(n,4)*c^(n-4)*(i s)^4 + ... +C(n,1)*c^(n-1)*(i s)^1 + C(n,3)*c^(n-3)*(i s)^3 + C(n,5)*c^(n-5)*(i s)^5 + ... =>比较两边的实部与虚部 实部:cos(nθ)=C(n,0)*c^n + C(n,2)*c^(n-2)*(i s)^2 + C(n,4)*c^(n-4)*(i s)^4 + ... i*(虚部):i*sin(nθ)=C(n,1)*c^(n-1)*(i s)^1 + C(n,3)*c^(n-3)*(i s)^3 + C(n,5)*c^(n-5)*(i s)^5 + ... 对所有的自然数n, 1. cos(nθ): 公式中出现的s都是偶次方,而s^2=1-c^2(平方关系),因此全部都可以改成以c(也就是cosθ)表示. 2. sin(nθ): (1)当n是奇数时: 公式中出现的c都是偶次方,而c^2=1-s^2(平方关系),因此全部都可以改成以s(也就是sinθ)表示. (2)当n是偶数时: 公式中出现的c都是奇次方,而c^2=1-s^2(平方关系),因此即使再怎么换成s,都至少会剩c(也就是 cosθ)的一次方无法消掉. (例. c^3=c*c^2=c*(1-s^2),c^5=c*(c^2)^2=c*(1-s^2)^2)

  半角公式

  tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);

  cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.

  sin^2(a/2)=(1-cos(a))/2

  cos^2(a/2)=(1+cos(a))/2

  tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))

  和差化积

  sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]

  sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]

  cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]

  cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]

  tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)

  tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)

  两角和公式

  tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)

  tan(α-β)=(tanα-tanβ)/(1+tanαtanβ)

  cos(α+β)=cosαcosβ-sinαsinβ

  cos(α-β)=cosαcosβ+sinαsinβ

  sin(α+β)=sinαcosβ+cosαsinβ

  sin(α-β)=sinαcosβ -cosαsinβ

  积化和差

  sinαsinβ =-[cos(α+β)-cos(α-β)] /2

  cosαcosβ = [cos(α+β)+cos(α-β)]/2

  sinαcosβ = [sin(α+β)+sin(α-β)]/2

  cosαsinβ = [sin(α+β)-sin(α-β)]/2

  双曲函数

  sh a = [e^a-e^(-a)]/2

  ch a = [e^a+e^(-a)]/2

  th a = sin h(a)/cos h(a)

  公式一:

  设α为任意角,终边相同的角的同一三角函数的值相等:

  sin(2kπ+α)= sinα

  cos(2kπ+α)= cosα

  tan(2kπ+α)= tanα

  cot(2kπ+α)= cotα

  公式二:

  设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

  sin(π+α)= -sinα

  cos(π+α)= -cosα

  tan(π+α)= tanα

  cot(π+α)= cotα

  公式三:

  任意角α与 -α的三角函数值之间的关系:

  sin(-α)= -sinα

  cos(-α)= cosα

  tan(-α)= -tanα

  cot(-α)= -cotα

  公式四:

  利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

  sin(π-α)= sinα

  cos(π-α)= -cosα

  tan(π-α)= -tanα

  cot(π-α)= -cotα

  公式五:

  利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:

  sin(2π-α)= -sinα

  cos(2π-α)= cosα

  tan(2π-α)= -tanα

  cot(2π-α)= -cotα

  公式六:

  π/2±α及3π/2±α与α的三角函数值之间的关系:

  sin(π/2+α)= cosα

  cos(π/2+α)= -sinα

  tan(π/2+α)= -cotα

  cot(π/2+α)= -tanα

  sin(π/2-α)= cosα

  cos(π/2-α)= sinα

  tan(π/2-α)= cotα

  cot(π/2-α)= tanα

  sin(3π/2+α)= -cosα

  cos(3π/2+α)= sinα

  tan(3π/2+α)= -cotα

  cot(3π/2+α)= -tanα

  sin(3π/2-α)= -cosα

  cos(3π/2-α)= -sinα

  tan(3π/2-α)= cotα

  cot(3π/2-α)= tanα

  (以上k∈Z)

  A·sin(ωt+θ)+ B·sin(ωt+φ) =

  √{(A² +B² +2ABcos(θ-φ)} · sin{ ωt + arcsin[ (A·sinθ+B·sinφ) / √{A^2 +B^2; +2ABcos(θ-φ)} }

  √表示根号,包括{......}中的内容

  三角函数的诱导公式(六公式)

  公式一 sin(-α) = -sinα

  cos(-α) = cosα

  tan (-α)=-tanα

  公式二sin(π/2-α) = cosα

  cos(π/2-α) = sinα

  公式三 sin(π/2+α) = cosα

  cos(π/2+α) = -sinα

  公式四sin(π-α) = sinα

  cos(π-α) = -cosα

  公式五sin(π+α) = -sinα

  cos(π+α) = -cosα

  公式六tanA= sinA/cosA

  tan(π/2+α)=-cotα

  tan(π/2-α)=cotα

  tan(π-α)=-tanα

  tan(π+α)=tanα

  诱导公式记背诀窍:奇变偶不变,符号看象限

  万能公式

  sinα=2tan(α/2)/[1+(tan(α/2))²]

  cosα=[1-(tan(α/2))²]/[1+(tan(α/2))²]

  tanα=2tan(α/2)/[1-(tan(α/2))²]

  其它公式

  (1) (sinα)^2+(cosα)^2=1(平方和公式)

  (2)1+(tanα)^2=(secα)^2

  (3)1+(cotα)^2=(cscα)^2

  证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可

  (4)对于任意非直角三角形,总有

  tanA+tanB+tanC=tanAtanBtanC

  证:

  A+B=π-C

  tan(A+B)=tan(π-C)

  (tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)

  整理可得

  tanA+tanB+tanC=tanAtanBtanC

  得证

  同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立

  由tanA+tanB+tanC=tanAtanBtanC可得出以下结论

  (5)cotAcotB+cotAcotC+cotBcotC=1

  (6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)

  (7)(cosA)^2;+(cosB)^2+(cosC)^2=1-2cosAcosBcosC

  (8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC

  其他非重点三角函数

  csc(a) = 1/sin(a)

  sec(a) = 1/cos(a)

  (seca)^2+(csca)^2=(seca)^2(csca)^2

  幂级数展开式

  sin x = x-x^3/3!+x^5/5!-......+(-1)^(k-1)*(x^(2k-1))/(2k-1)!+....... (-∞  cos x = 1-x^2/2!+x^4/4!-......+(-1)k*(x^(2k))/(2k)!+...... (-∞  arcsin x = x + 1/2*x^3/3 + 1*3/(2*4)*x^5/5 + ......(|x|<1)

  arccos x = π - ( x + 1/2*x^3/3 + 1*3/(2*4)*x^5/5 + ...... ) (|x|<1)

  arctan x = x - x^3/3 + x^5/5 -......(x≤1)

  无限公式

  sinx=x(1-x^2/π^2)(1-x^2/4π^2)(1-x^2/9π^2)......

  cosx=(1-4x^2/π^2)(1-4x^2/9π^2)(1-4x^2/25π^2)......

  tanx=8x[1/(π^2-4x^2)+1/(9π^2-4x^2)+1/(25π^2-4x^2)+......]

  secx=4π[1/(π^2-4x^2)-1/(9π^2-4x^2)+1/(25π^2-4x^2)-+......]

  (sinx)x=cosx/2cosx/4cosx/8......

  (1/4)tanπ/4+(1/8)tanπ/8+(1/16)tanπ/16+......=1/π

  arctan x = x - x^3/3 + x^5/5 -......(x≤1)

  和自变量数列求和有关的公式

  sinx+sin2x+sin3x+......+sinnx=[sin(nx/2)sin((n+1)x/2)]/sin(x/2)

  cosx+cos2x+cos3x+......+cosnx=[cos((n+1)x/2sin(nx/2)]/sin(x/2)

  tan((n+1)x/2)=(sinx+sin2x+sin3x+......+sinnx)/(cosx+cos2x+cos3x+......+cosnx)

  sinx+sin3x+sin5x+......+sin(2n-1)x=(sinnx)^2/sinx

  cosx+cos3x+cos5x+......+cos(2n-1)x=sin(2nx)/(2sinx)

高考招生网Www.ZhaoSheng.net提供最新高考成绩查询时间,高考成绩查询入口,高考信息,高考志愿填报指导,高考政策,高考分数线,高考录取人数,高考真题,高考作文,高校招生报名信息。

免责声明:我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理,本文部分文字与图片资源来自于网络,转载此文是出于传递更多信息之目的,若有来源标注错误或侵犯了您的合法权益,请立即通知我们,情况属实,我们会第一时间予以删除,并同时向您表示歉意,谢谢!

联系电话:135-2467-2021