您现在的位置是:首页» 高考攻略» 三角函数和差化积公式的推导过程,三角函数的最小正周期公式及最值

三角函数和差化积公式的推导过程,三角函数的最小正周期公式及最值

2024-04-05 22:15:47
本内容由小编为大家分享关于招生简章、录取分数、报名考试、志愿填报、大学院校排名等教育信息。同角三角函数的基本关系式倒数关系: 商的关系: 平方关系:tanα ·cotα=1sinα ·cscα=1cosα ·secα=1 sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα
本内容由小编为大家分享关于招生简章、录取分数、报名考试、志愿填报、大学院校排名等教育信息。

同角三角函数的基本关系式

倒数关系: 商的关系: 平方关系:

tanα ·cotα=1

sinα ·cscα=1

cosα ·secα=1 sinα/cosα=tanα=secα/cscα

cosα/sinα=cotα=cscα/secα sin2α+cos2α=1

1+tan2α=sec2α

1+cot2α=csc2α

(六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。”)

诱导公式(口诀:奇变偶不变,符号看象限。)

sin(-α)=-sinα

cos(-α)=cosα tan(-α)=-tanα

cot(-α)=-cotα

sin(π/2-α)=cosα

cos(π/2-α)=sinα

tan(π/2-α)=cotα

cot(π/2-α)=tanα

sin(π/2+α)=cosα

cos(π/2+α)=-sinα

tan(π/2+α)=-cotα

cot(π/2+α)=-tanα

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

sin(3π/2-α)=-cosα

cos(3π/2-α)=-sinα

tan(3π/2-α)=cotα

cot(3π/2-α)=tanα

sin(3π/2+α)=-cosα

cos(3π/2+α)=sinα

tan(3π/2+α)=-cotα

cot(3π/2+α)=-tanα

sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

sin(2kπ+α)=sinα

cos(2kπ+α)=cosα

tan(2kπ+α)=tanα

cot(2kπ+α)=cotα

(其中k∈Z)

两角和与差的三角函数公式 万能公式

sin(α+β)=sinαcosβ+cosαsinβ

sin(α-β)=sinαcosβ-cosαsinβ

cos(α+β)=cosαcosβ-sinαsinβ

cos(α-β)=cosαcosβ+sinαsinβ

tan(α+β)=(tanα+tanβ)/(1-tanα ·tanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα ·tanβ)

sinα=2tan(α/2)/(1+tan2(α/2))

cosα=(1-tan2(α/2))/(1+tan2(α/2))

tanα=(2tan(α/2))/(1-tan2(α/2))

半角的正弦、余弦和正切公式 三角函数的降幂公式

二倍角的正弦、余弦和正切公式 三倍角的正弦、余弦和正切公式

sin2α=2sinαcosα

cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α

tan2α=2tanα/(1-tan2α)

sin3α=3sinα-4sin3α

cos3α=4cos3α-3cosα

tan3α=(3tanα-tan3α)/(1-3tan2α)

三角函数的和差化积公式 三角函数的积化和差公式

sinα+sinβ=2sin(2/(α+β α-β))·cos(2/(α+β α-β))

sinα-sinβ=2cos(2/(α+β α-β))·sin(2/(α+β α-β))

cosα+cosβ=2cos(2/(α+β α-β))·cos(2/(α+β α-β))

cosα-cosβ=-2sin(2/(α+β α-β))·sin(2/(α+β α-β))

sinα ·cosβ=-[sin(α+β)+sin(α-β)]/2

1cosα ·sinβ=-[sin(α+β)-sin(α-β)]/2

1cosα ·cosβ=-[cos(α+β)+cos(α-β)]/2

1sinα ·sinβ=— -[cos(α+β)-cos(α-β)]

2化asinα ±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式)

高考招生网wWw.Zhaosheng.NET提供最新高考成绩查询时间,高考成绩查询入口,高考信息,高考志愿填报指导,高考政策,高考分数线,高考录取人数,高考真题,高考作文,高校招生报名信息。

免责声明:我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理,本文部分文字与图片资源来自于网络,转载此文是出于传递更多信息之目的,若有来源标注错误或侵犯了您的合法权益,请立即通知我们,情况属实,我们会第一时间予以删除,并同时向您表示歉意,谢谢!

联系电话:135-2467-2021

标签: 公式 函数 数学