您现在的位置是:首页» 备考复习» 线面垂直的证明有哪些,线面垂直一般怎么证明面面垂直

线面垂直的证明有哪些,线面垂直一般怎么证明面面垂直

2024-04-30 12:07:55
本内容由小编为大家分享关于招生简章、录取分数、报名考试、志愿填报、大学院校排名等教育信息.直线与平面垂直定义:如果一条直线与平面内任意一条直线都垂直,那么这条直线与这个平面垂直。是将“三维”问题转化为“二维”解决是一种重要的立体几何数学思想方法。证明线面垂直的方法1、线面垂直的判定定理直线与平面内的两相交直线垂直2、面
本内容由小编为大家分享关于招生简章、录取分数、报名考试、志愿填报、大学院校排名等教育信息.

直线与平面垂直定义:如果一条直线与平面内任意一条直线都垂直,那么这条直线与这个平面垂直。是将“三维”问题转化为“二维”解决是一种重要的立体几何数学思想方法。

证明线面垂直的方法

1、线面垂直的判定定理

直线与平面内的两相交直线垂直

2、面面垂直的性质

若两平面垂直则在一面内垂直于交线的直线必垂直于另一平面

3、线面垂直的性质

两平行线中有一条与平面垂直,则另一条也与平面垂直

4、面面平行的性质

一线垂直于二平行平面之一,则必垂直于另一平面

5、定义法

直线与平面内任一直线垂直

线面垂直证法

由性质定理2可知,过空间内一点(无论是否在已知平面上)ZhaoSheng.Net,有且只有一条直线与平面垂直。下面就讨论如何作出这条唯一的直线。

点在平面外

设点P是平面α外的任意一点,求作一条直线PQ使PQ⊥α。

作法:

①在α内任意作一条直线l,并过P作PA⊥l,垂足为A。

此时,若PA⊥α,则所需PQ已作出;若不是这样,

②在α内过A作m⊥l。

③过P作PQ⊥m,垂足为Q,则PQ是所求直线。

证明:

由作法可知,l⊥PA,l⊥QA

∵PA∩QA=A

∴l⊥平面PQA

∴PQ⊥l

又∵PQ⊥m,且m∩l=A,m⊂α,l⊂α

∴PQ⊥α

点在平面内

设点P是平面α内的任意一点,求作一条直线PQ使PQ⊥α。

作法:

①过平面外一点A作AB⊥α,作法见上。

②过P作PQ∥AB,PQ是所求直线。

证明:

由性质定理3可知,若作出了AB⊥α,PQ∥AB,那么PQ⊥α。

ZhaoSheng.NET高考招生网提供最新高考成绩查询时间,高考成绩查询入口,高考信息,高考志愿填报指导,高考政策,高考分数线.高考录取人数,高考真题,高考作文,高校招生报名信息。

免责声明:我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理,本文部分文字与图片资源来自于网络,转载此文是出于传递更多信息之目的,若有来源标注错误或侵犯了您的合法权益,请立即通知我们,情况属实,我们会第一时间予以删除,并同时向您表示歉意,谢谢!

联系电话:135-2467-2021