本内容由小编为大家分享关于招生简章、录取分数、报名考试、志愿填报、大学院校排名等教育信息.人工智能技术关系到人工智能产品是否可以顺利应用到我们的生活场景中。在人工智能领域,它普遍包含了机器学习、知识图谱、自然语言处理、人机交互、计算机视觉、生物特征识别、AR/VR七个关键技术。一、机器学习机器学习(MachineLea
本内容由小编为大家分享关于招生简章、录取分数、报名考试、志愿填报、大学院校排名等教育信息.人工智能技术关系到人工智能产品是否可以顺利应用到我们的生活场景中。在人工智能领域,它普遍包含了
机器学习
、知识图谱、
自然语言处理
、人机交互、计算机视觉、生物特征识别、AR/VR七个关键技术。
一、机器学习
机器学习(MachineLearning)是一门涉及统计学、系统辨识、逼近理论、神经网络、优化理论、
计算机科学
、脑科学等诸多领域的
交叉学科
,研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,是人工智能技术的核心。基于数据的机器学习是现代智能技术中的重要方法之一,研究从观测数据(样本)出发寻找规律,利用这些规律对未来数据或无法观测的数据进行预测。根据学习模式、
学习方法
以及算法的不同,机器学习存在不同的分类方法。
根据学习模式将机器学习分类为监督学习、
无监督学习
和强化学习等。
根据学习方法可以将机器学习分为传统机器学习和深度学习。
二、知识图谱
知识图谱本质上是结构化的语义知识库,是一种由节点和边组成的图数据结构,以符号形式描述物理世界中的概念及其相互关系,其基本组成单位是“实体—关系—实体”三元组,以及实体及其相关“属性—值”对。不同实体之间通过关系相互联结,构成网状的知识结构。在知识图谱中,每个节点表示现实世界的“实体”,每条边为实体与实体之间的“关系”。通俗地讲,知识图谱就是把所有不同种类的信息连接在一起而得到的一个关系网络,提供了从“关系”的角度去分析问题的能力。
知识图谱可用于反欺诈、不一致性验证、组团欺诈等公共安全保障领域,需要用到异常分析、静态分析、动态分析等
数据挖掘
方法。特别地,知识图谱在
搜索引擎
、可视化展示和
精准营销
方面有很大的优势,已成为业界的热门工具。但是,知识图谱的发展还有很大的挑战,如数据的噪声问题,即数据本身有错误或者数据存在冗余。随着知识图谱应用的不断深入,还有一系列关键技术需要突破。
三、自然语言处理
自然语言处理是计算机科学领域与人工智能领域中的一个重要方向,研究能实现人与计算机之间用自然语言进行有效通信的各种理论和方法,涉及的领域较多,主要包括机器翻译、机器阅读理解和问答系统等。
机器翻译
机器翻译技术是指利用计算机技术实现从一种自然语言到另外一种自然语言的翻译过程。基于统计的机器翻译方法突破了之前基于规则和实例翻译方法的局限性,翻译性能取得巨大提升。基于深度神经网络的机器翻译在日常口语等一些场景的成功应用已经显现出了巨大的潜力。随着上下文的语境表征和知识逻辑推理能力的发展,自然语言知识图谱不断扩充,机器翻译将会在多轮对话翻译及篇章翻译等领域取得更大进展。
语义理解
语义理解技术是指利用计算机技术实现对文本篇章的理解,并且回答与篇章相关问题的过程。语义理解更注重于对上下文的理解以及对答案精准程度的把控。随着MCTest数据集的发布,语义理解受到更多关注,取得了快速发展,相关数据集和对应的神经网络模型层出不穷。语义理解技术将在智能客服、产品自动问答等相关领域发挥重要作用,进一步提高问答与对话系统的精度。
问答系统
问答系统分为开放领域的对话系统和特定领域的问答系统。问答系统技术是指让计算机像人类一样用自然语言与人交流的技术。人们可以向问答系统提交用自然语言表达的问题,系统会返回关联性较高的答案。尽管问答系统目前已经有了不少应用产品出现,但大多是在实际信息服务系统和智能*助手等领域中的应用,在问答系统
鲁棒性
方面仍然存在着问题和挑战。
自然语言处理面临四大挑战:
一是在词法、句法、语义、语用和语音等不同层面存在不确定性;
二是新的词汇、术语、语义和语法导致未知语言现象的不可预测性;
三是数据资源的不充分使其难以覆盖复杂的语言现象;
四是语义知识的模糊性和错综复杂的关联性难以用简单的
数学模型
描述,语义计算需要参数庞大的非线性计算
四、人机交互
人机交互主要研究人和计算机之间的信息交换,主要包括人到计算机和计算机到人的两部分信息交换,是人工智能领域的重要的外围技术。人机交互是与
认知心理学
、人机工程学、多媒体技术、
虚拟现实技术
等密切相关的综合学科。传统的人与计算机之间的信息交换主要依靠交互设备进行,主要包括键盘、鼠标、操纵杆、数据服装、眼动跟踪器、位置跟踪器、数据手套、压力笔等输入设备,以及打印机、绘图仪、显示器、头盔式显示器、音箱等输出设备。人机交互技术除了传统的基本交互和图形交互外,还包括语音交互、情感交互、体感交互及脑机交互等技术。
五、计算机视觉
计算机视觉是使用计算机模仿人类视觉系统的科学,让计算机拥有类似人类提取、处理、理解和分析图像以及图像序列的能力。自动驾驶、机器人、智能医疗等领域均需要通过计算机视觉技术从视觉信号中提取并处理信息。近来随着深度学习的发展,预处理、特征提取与算法处理渐渐融合,形成端到端的人工智能算法技术。根据解决的问题,计算机视觉可分为计算成像学、图像理解、三维视觉、动态视觉和视频编解码五大类。
目前,计算机视觉技术发展迅速,已具备初步的产业规模。未来计算机视觉技术的发展主要面临以下挑战:
一是如何在不同的应用领域和其他技术更好的结合,计算机视觉在解决某些问题时可以广泛利用大数据,已经逐渐成熟并且可以超过人类,而在某些问题上却无法达到很高的精度;
二是如何降低计算机视觉算法的开发时间和人力成本,目前计算机视觉算法需要大量的数据与人工标注,需要较长的研发周期以达到应用领域所要求的精度与耗时;
三是如何加快新型算法的设计开发,随着新的成像硬件与人工智能芯片的出现,针对不同芯片与数据采集设备的计算机视觉算法的设计与开发也是挑战之一。
六、生物特征识别
生物特征识别技术是指通过个体生理特征或行为特征对个体身份进行识别认证的技术。从应用流程看,生物特征识别通常分为注册和识别两个阶段。注册阶段通过传感器对人体的生物表征信息进行采集,如利用图像传感器对指纹和人脸等光学信息、麦克风对说话声等声学信息进行采集,利用数据预处理以及特征提取技术对采集的数据进行处理,得到相应的特征进行存储。
识别过程采用与注册过程一致的信息采集方式对待识别人进行信息采集、数据预处理和特征提取,然后将提取的特征与存储的特征进行比对分析,完成识别。从应用任务看,生物特征识别一般分为辨认与确认两种任务,辨认是指从存储库中确定待识别人身份的过程,是一对多的问题;确认是指将待识别人信息与存储库中特定单人信息进行比对,确定身份的过程,是*的问题。
生物特征识别技术涉及的内容十分广泛,包括指纹、
掌纹
、人脸、
虹膜
、指静脉、声纹、步态等多种生物特征,其识别过程涉及到图像处理、计算机视觉、语音识别、机器学习等多项技术。目前生物特征识别作为重要的智能化身份认证技术,在金融、公共安全、教育、交通等领域得到广泛的应用。
七、VR/AR
虚拟现实(VR)/
增强现实
(AR)是以计算机为核心的新型视听技术。结合相关科学技术,在一定范围内生成与真实环境在视觉、听觉、触感等方面高度近似的数字化环境。用户借助必要的装备与数字化环境中的对象进行交互,相互影响,获得近似真实环境的感受和体验,通过显示设备、跟踪定位设备、触力觉交互设备、数据获取设备、专用芯片等实现。
虚拟现实/增强现实从技术特征角度,按照不同处理阶段,可以分为获取与建模技术、分析与利用技术、交换与分发技术、展示与交互技术以及技术标准与评价体系五个方面。获取与建模技术研究如何把物理世界或者人类的创意进行数字化和模型化,难点是三维物理世界的数字化和模型化技术;分析与利用技术重点研究对数字内容进行分析、理解、搜索和知识化方法,其难点是在于内容的语义表示和分析;交换与分发技术主要强调各种网络环境下大规模的数字化内容流通、转换、集成和面向不同终端用户的个性化服务等,其核心是开放的内容交换和版权管理技术;展示与交换技术重点研究符合人类习惯数字内容的各种显示技术及交互方法,以期提高人对复杂信息的认知能力,其难点在于建立自然和谐的人机交互环境;标准与评价体系重点研究虚拟现实/增强现实基础资源、内容编目、信源编码等的规范标准以及相应的评估技术。
目前虚拟现实/增强现实面临的挑战主要体现在智能获取、普适设备、自由交互和感知融合四个方面。在硬件平台与装置、核心芯片与器件、软件平台与工具、相关标准与规范等方面存在一系列科学技术问题。总体来说虚拟现实/增强现实呈现虚拟现实系统智能化、虚实环境对象无缝融合、自然交互全方位与舒适化的发展趋势
人工智能专业招文科生的大学
清华大学;北京大学;浙江大学;上海交通大学;南京大学;复旦大学;哈尔滨工业大学。
1、清华大学计算机系智能技术与系统国家重点实验室是国内在人工智能人才培养和科学研究的重镇。
2、北京大学智能科学与技术专业主要从事机器感知、智能机器人、智能信息处理和机器学习等交叉学科的研究和教学。
3、浙江大学在人工智能方面有着肥沃的土壤,其计算机学院下设的人工智能研究所是中国设立最早的人工智能研究机构之一。
4、上海交通大学在人工智能领域已有数年的积累,计算机系俞凯教授团队的智能语音技术取得了多个国际评测冠军,达到了国际一流水平。
5、南京大学的计算机科学研究起步于1958年,建系以来,南京大学的计算机学科建设进入快速发展期,在队伍建设、人才培养、科学研究等方面一直位居国内先进行列。
6、复旦大学图像与智能实验室主要研究领域包括人工智能,图像处理,计算机视觉,信息安全等基于生物视觉的感知和认知结合的学习模型及其在脑型机器人上的应用,应用领域包括工业视觉、智能机器人、智能安防、生物医学影像识别。
7、哈工大计算机科学与技术学科是国家重点一级学科,并进入ESI全球前1%的研究机构行列。
人工智能相关专业是何时火起来的?哪些大学有这个专业?
人工智能这个专业差不多是在17 18年火起来的,因为在我16年上本科的时候,其实很多学校还是没有这个专业的,然后就在我18年,我的学弟他们就有很多选择了这个专业,然后基本大部分学校也开设了这个专业,就是因为当时人工智能是一个潮流,所以大部分的学校跟随这个潮流都开启了这个专业,我们学校还为这个专业开设了一个专门的实验室,供新进来的本科生学习。
其实这个专业的话,可能在未来几年是一个比较好的大的趋势,因为现在的产品越来越人工智能化,因此人工智能这个专业,它未来所需要的岗位就会越来越多,比如人工智能研发,人工智能控制以及人工智能*等等,这类型都是需要大量的人才的。因此这届的高考生其实选择工科的话人工智能这个专业是一个非常不错的专业人工智能他所学的专业课大部分都是物电系通学的课程,比如数字电路基础模拟,电路基础互联网工程以及单片机,还有就是信号与系统等等这类型的专业课。
学了这些专业课的话,其实在未来的就业是比较容易的,因为这些专业他对口了很多的工作。而且这些工作基本上所有的公司都设有岗位,因此人工智能在以后毕业是非常容易找工作的,这也是我为什么推荐大家学人工智能这个专业主要的一个原因。
除去这些原因人工智能未来会发展为一个非常大的趋势,因为现在越来越多的高校都开设了人工智能这个专业,而且很多的学校都是新型开启这个专业的,因此表示着这个专业在未来的几年将会是一股热潮,所以现在选择这个专业是一项非常明智的选择。
ZhaoSheng.net高考招生网提供最新高考成绩查询时间,高考成绩查询入口,高考信息,高考志愿填报指导,高考政策,高考分数线.高考录取人数,高考真题,高考作文,高校招生报名信息。